584 research outputs found

    Solutions to large B and L breaking in the Randall-Sundrum model

    Get PDF
    The stability of proton and neutrino masses are discussed in the Randall-Sundrum model. We show that relevant operators should be suppressed, if the hierarchical Yukawa matrices are explained only by configurations of wavefunctions for fermions and the Higgs field along the extra dimension. We assume a ZNZ_N discrete gauge symmetry to suppress those operators. In the Dirac neutrino case, there is an infinite number of symmetries which may forbid the dangerous operators. In the Majorana neutrino case, the discrete gauge symmetries should originate from U(1)XU(1)_X gauge symmetries which are broken on the Planck brane. We also comment on the n−nˉn-\bar{n} oscillation as a phenomenon which can distinguish those discrete gauge symmetries.Comment: 12 pages, No figures, Added reference

    Neutron-Anti-Neutron Oscillation: Theory and Phenomenology

    Full text link
    The discovery of neutrino masses has provided strong hints in favor of the possibility that B-L symmetry is an intimate feature of physics beyond the standard model. I discuss how important information about this symmetry as well as other scenarios for TeV scale new physics can be obtained from the baryon number violating process, neutron-anti-neutron oscillation. This article presents an overview of different aspects of neutron-anti-neutron oscillation and is divided into the following parts : (i) the phenomenon; (ii) the physics, (iii) plausible models and (iv) applications to cosmology. In particular, it is argued how the discovery of n−nˉn-\bar{n} oscillation can significantly affect our thinking about simple grand unified theory paradigms for physics beyond the standard model, elucidate the nature of forces behind neutrino mass and provide a new microphysical view of the origin of matter in the universe.Comment: 34 pages; 7 figures; Invited review for the issue on "Fundamental Neutron Physics" by J. Phys.

    Observing Nucleon Decay in Lead Perchlorate

    Get PDF
    Lead perchlorate, part of the OMNIS supernova neutrino detector, contains two nuclei, 208Pb and 35Cl, that might be used to study nucleon decay. Both would produce signatures that will make them especially useful for studying less-well-studied neutron decay modes, e.g., those in which only neutrinos are emitted.Comment: 6 pages, 2 figure

    Signatures of Nucleon Disappearance in Large Underground Detectors

    Full text link
    For neutrons bound inside nuclei, baryon instability can manifest itself as a decay into undetectable particles (e.g., n→νννˉ\it n \to \nu \nu \bar{\nu} ), i.e., as a disappearance of a neutron from its nuclear state. If electric charge is conserved, a similar disappearance is impossible for a proton. The existing experimental lifetime limit for neutron disappearance is 4-7 orders of magnitude lower than the lifetime limits with detectable nucleon decay products in the final state [PDG2000]. In this paper we calculated the spectrum of nuclear de-excitations that would result from the disappearance of a neutron or two neutrons from 12^{12}C. We found that some de-excitation modes have signatures that are advantageous for detection in the modern high-mass, low-background, and low-threshold underground detectors, where neutron disappearance would result in a characteristic sequence of time- and space-correlated events. Thus, in the KamLAND detector [Kamland], a time-correlated triple coincidence of a prompt signal, a captured neutron, and a β+\beta^{+} decay of the residual nucleus, all originating from the same point in the detector, will be a unique signal of neutron disappearance allowing searches for baryon instability with sensitivity 3-4 orders of magnitude beyond the present experimental limits.Comment: 13 pages including 6 figures, revised version, to be published in Phys.Rev.

    The OscSNS White Paper

    Full text link
    There exists a need to address and resolve the growing evidence for short-baseline neutrino oscillations and the possible existence of sterile neutrinos. Such non-standard particles require a mass of ∼1\sim 1 eV/c2^2, far above the mass scale associated with active neutrinos, and were first invoked to explain the LSND νˉμ→νˉe\bar \nu_\mu \rightarrow \bar \nu_e appearance signal. More recently, the MiniBooNE experiment has reported a 2.8σ2.8 \sigma excess of events in antineutrino mode consistent with neutrino oscillations and with the LSND antineutrino appearance signal. MiniBooNE also observed a 3.4σ3.4 \sigma excess of events in their neutrino mode data. Lower than expected neutrino-induced event rates using calibrated radioactive sources and nuclear reactors can also be explained by the existence of sterile neutrinos. Fits to the world's neutrino and antineutrino data are consistent with sterile neutrinos at this ∼1\sim 1 eV/c2^2 mass scale, although there is some tension between measurements from disappearance and appearance experiments. In addition to resolving this potential major extension of the Standard Model, the existence of sterile neutrinos will impact design and planning for all future neutrino experiments. It should be an extremely high priority to conclusively establish if such unexpected light sterile neutrinos exist. The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory, built to usher in a new era in neutron research, provides a unique opportunity for US science to perform a definitive world-class search for sterile neutrinos.Comment: This white paper is submitted as part of the SNOWMASS planning proces

    Search for extraterrestrial antineutrino sources with the KamLAND detector

    Get PDF
    We present the results of a search for extraterrestrial electron antineutrinos (νˉe\bar{\nu}_{e}'s) in the energy range 8.3MeV<Eνˉe<31.8MeV8.3 MeV < E_{\bar{\nu}_{e}} < 31.8 MeV using the KamLAND detector. In an exposure of 4.53 kton-year, we identify 25 candidate events. All of the candidate events can be attributed to background, most importantly neutral current atmospheric neutrino interactions, setting an upper limit on the probability of 8^{8}B solar νe\nu_{e}'s converting into νˉe\bar{\nu}_{e}'s at 5.3×10−55.3 \times 10^{-5} (90% C.L.), if we assume an undistorted νˉe\bar{\nu}_{e} shape. This limit corresponds to a solar νˉe\bar{\nu}_{e} flux of 93cm−2s−193 cm^{-2} s^{-1} or an event rate of 1.6events(kton−year)−11.6 events (kton-year)^{-1} above the energy threshold (Eνˉe>8.3MeV)(E_{\bar{\nu}_{e}} > 8.3 MeV). The present data also allows us to set more stringent limits on the diffuse supernova neutrino flux and on the annihilation rates for light dark matter particles.Comment: 22 pages, 6 figure
    • …
    corecore